Strategies for Solving Linear Systems of Equations
نویسندگان
چکیده
Methods for solving linear systems of equations are at the heart of many computational science applications. Examples include science domains such as astrophysics, biology, chemistry, fusion energy, power system networks, and structural engineering, employing a diverse set of modeling approaches, such as computational fluid dynamics, finite element modeling, and linear programming. In this report we discuss how the global view programming language Chapel, being developed as part of the Cray Cascade project, may be used to express algorithms for solving these systems. Our focus is on sparse matrices, and the expression of the matrix-vector product operation required by Krylov subspace solution algorithms. We include an application that generates a dense linear system.
منابع مشابه
Resolution of Fuzzy Complex Systems of Linear Equations Via Wu's Method
The aim of this paper is to present algebraic method which is called Wu's method to solving fuzzy complex systems of linear equations. Wu's method is used as a solution procedure for solving the crisp polynomial equations system. This algorithm leads to solving characteristic sets that are amenable to easy solution. To illustrate the easy application of the proposed method, numerical examples a...
متن کاملFinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملJacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations
This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product. The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations which appear in various fields of science such as physics and engineering. The Operational matr...
متن کاملSsT decomposition method for solving fully fuzzy linear systems
The SST decomposition method for solving system of linear equations make it possible to obtain the values of roots of the system with the specified accuracy as the limit of the sequence of some vectors. In this topic we are going to consider vectors as fuzzy vectors. We have considered a numerical example and tried to find out solution vector x in fuzzified form using method of SST decomposition.
متن کاملModified homotopy perturbation method for solving non-linear oscillator's equations
In this paper a new form of the homptopy perturbation method is used for solving oscillator differential equation, which yields the Maclaurin series of the exact solution. Nonlinear vibration problems and differential equation oscillations have crucial importance in all areas of science and engineering. These equations equip a significant mathematical model for dynamical systems. The accuracy o...
متن کاملA new approach for solving fuzzy linear Volterra integro-differential equations
In this paper, a fuzzy numerical procedure for solving fuzzy linear Volterra integro-differential equations of the second kind under strong generalized differentiability is designed. Unlike the existing numerical methods, we do not replace the original fuzzy equation by a $2times 2$ system ofcrisp equations, that is the main difference between our method and other numerical methods.Error ana...
متن کامل